Let $(f_n : I \to \mathbb{R})_{n \in \mathbb{N}}$ be a sequence of functions. If $f : I \to \mathbb{R}$ is another function, we say that f_n converges uniformly to f is for every $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that for all $n \ge N$ and for every $x \in \mathbb{R}$ we have $|f_n(x) - f(x)| < \epsilon$.

We say that f_n converges pointwise to f is for every $x \in \mathbb{R}$, for every $\epsilon > 0$, there exists $n \in \mathbb{N}$ such that for all $n \geq N$ we have $|f_n(x) - f(x)| < \epsilon$.

Problem 1

- 1. Provide a sequence of functions $f_n: I \to \mathbb{R}$ that converges pointwise to f, yet f is not continuous.
- 2. Provide a sequence of integrable functions $f_n : I \to \mathbb{R}$ that converges pointwise to an integrable function f, yet the sequence $(\int f_n)$ does not converge to $\int f$.
- 3. Provide a sequence of integrable functions $f_n: I \to \mathbb{R}$ that converge pointwise to a non-integrable function f.

4. Provide a sequence of nonnegative bounded functions $f_n : I \to \mathbb{R}$, with $M_n = \sup f_n$, such that $\sum_{n=1}^{\infty} f_n$ converges uniformly, yet $\sum_{n=1}^{\infty} M_n$ does not converge. This shows the converge to the Weierstrass *M*-test does not hold.

Problem 2

Suppose that f_n are continuous functions on [0,1] that converge uniformly to f. Prove that

$$\lim_{n \to \infty} \int_0^{1-1/n} f_n = \int_0^1 f.$$

Is this true if the convergence isn't uniform?

Problem 3

Prove that for $-1 < x \leq 1$,

$$\log(1+x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}.$$

Problem 4

- 1. Write down the power series for $\log(1-x)$ and $\log[(1+x)/(1-x)]$ around x = 0.
- 2. Show that the power series for $f(x) = \log(1-x)$ converges only for $-1 \le x < 1$, and that the power series for $g(x) = \log[(1+x)/(1-x)]$ converges only for x in (-1, 1).